ESOs: Usando o Modelo Black-Scholes As empresas precisam usar um modelo de preço de opções para pagar o valor justo de suas opções de estoque de empregado (ESOs). Aqui mostramos como as empresas produzem essas estimativas de acordo com as regras vigentes a partir de abril de 2004. Uma opção tem um valor mínimo Quando concedido, um ESO típico tem valor de tempo, mas sem valor intrínseco. Mas a opção vale mais do que nada. O valor mínimo é o preço mínimo que alguém estaria disposto a pagar pela opção. É o valor defendido por duas propostas de legislação (as contas do Congresso Enzi-Reid e Baker-Eshoo). É também o valor que as empresas privadas podem usar para valorar seus subsídios. Se você usar zero como a entrada de volatilidade no modelo Black-Scholes, você obtém o valor mínimo. As empresas privadas podem usar o valor mínimo porque não possuem histórico comercial, o que torna difícil medir a volatilidade. Legisladores gostam do valor mínimo porque remove a volatilidade - uma fonte de grande controvérsia - da equação. A comunidade de alta tecnologia, em particular, tenta minar o Black-Scholes argumentando que a volatilidade não é confiável. Infelizmente, a remoção da volatilidade cria comparações injustas porque remove todos os riscos. Por exemplo, uma opção 50 no estoque Wal-Mart tem o mesmo valor mínimo que uma opção 50 em um estoque de alta tecnologia. O valor mínimo pressupõe que o estoque deve crescer pelo menos a taxa sem risco (por exemplo, o rendimento do Tesouro de cinco ou 10 anos). Nós ilustramos a idéia abaixo, examinando uma opção de 30 com um prazo de 10 anos e uma taxa sem risco (e sem dividendos): você pode ver que o modelo de valor mínimo faz três coisas: (1) cresce o estoque em A taxa livre de risco para o termo completo, (2) assume um exercício e (3) descontos o ganho futuro para o valor presente com a mesma taxa livre de risco. Calculando o Valor Mínimo Se esperamos que um estoque atinja pelo menos um retorno sem risco sob o método do valor mínimo, os dividendos reduzem o valor da opção (como o detentor das opções renuncia a dividendos). Dito de outra forma, se assumirmos uma taxa sem risco para o retorno total, mas alguns dos vazamentos de retorno para dividendos, a valorização esperada do preço será menor. O modelo reflete essa menor valorização ao reduzir o preço das ações. Nas duas exposições abaixo, derivamos a fórmula de valor mínimo. O primeiro mostra como chegamos a um valor mínimo para uma ação que não paga dividendos, o segundo substitui um preço de ações reduzidas pela mesma equação para refletir o efeito de redução de dividendos. Aqui está a fórmula de valor mínimo para um estoque de dividendos: preço de ações de s e constante de Eulers (2.718) d rendimento de dividendo t termo de opção k exercício (strike) preço r taxa de risco não se preocupe com a constante e (2.718) é Apenas uma maneira de compor e descontar continuamente em vez de compor em intervalos anuais. Volatilidade do Valor Mínimo de Black-Scholes Podemos entender o Black-Scholes como sendo igual ao valor mínimo de opções mais valor adicional para a volatilidade das opções: quanto maior a volatilidade, maior o valor adicional. Graficamente, podemos ver o valor mínimo como uma função inclinada para cima do termo da opção. A volatilidade é um aumento na linha de valor mínimo. Aqueles que estão inclinados matematicamente podem preferir entender o Black-Scholes como tomando a fórmula de valor mínimo que já revisamos e adicionando dois fatores de volatilidade (N1 e N2). Juntos, estes aumentam o valor dependendo do grau de volatilidade. Black-Scholes deve ser ajustado para ESOs Black-Scholes estima o valor justo de uma opção. É um modelo teórico que faz vários pressupostos, incluindo a capacidade comercial total da opção (ou seja, a medida em que a opção pode ser exercida ou vendida nos titulares das opções) e uma volatilidade constante ao longo da vida das opções. Se os pressupostos forem corretos, o modelo é uma prova matemática e sua saída de preço deve estar correta. Mas, estritamente falando, os pressupostos provavelmente não estão corretos. Por exemplo, exige que os preços das ações se movam em um caminho chamado movimento browniano - uma caminhada aleatória fascinante que realmente é observada em partículas microscópicas. Muitos estudos discutem que os estoques se movem dessa maneira. Outros pensam que o movimento Brownian aproxima-se o bastante, e considera o Black-Scholes uma estimativa imprecisa, mas útil. Para opções negociadas de curto prazo, o Black-Scholes tem sido extremamente bem sucedido em muitos testes empíricos que comparam a produção de preços com os preços de mercado observados. Existem três diferenças principais entre os ESOs e as opções negociadas de curto prazo (que estão resumidas na tabela abaixo). Tecnicamente, cada uma dessas diferenças viola uma hipótese de Black-Scholes - um fato contemplado pelas regras contábeis no FAS 123. Estes incluíram dois ajustes ou correções para o produto natural dos modelos, mas a terceira diferença - essa volatilidade não pode manter-se constante ao longo do tempo invulgarmente longo Vida de um ESO - não foi abordada. Aqui estão as três diferenças e as correções de avaliação propostas propostas no FAS 123 que ainda estão vigentes a partir de março de 2004. A correção mais significativa nas regras atuais é que as empresas podem usar a vida esperada no modelo em vez do termo completo real. É típico que uma empresa use uma vida esperada de quatro a seis anos para avaliar as opções com termos de 10 anos. Esta é uma solução estranha - um band-aid, realmente - uma vez que Black-Scholes exige o termo atual. Mas o FASB estava procurando uma maneira quase objetiva de reduzir o valor do ESO, uma vez que não é negociado (isto é, desconsiderar o valor do ESO por sua falta de liquidez). Conclusão - Efeitos Práticos O Black-Scholes é sensível a várias variáveis, mas se assumirmos uma opção de 10 anos em um estoque de dividendos e uma taxa sem risco de 5, o valor mínimo (não assume volatilidade) nos dá 30 Do preço das ações. Se adicionarmos a volatilidade esperada de, digamos, 50, o valor da opção quase dobra quase 60 do preço das ações. Então, para esta opção particular, a Black-Scholes nos dá 60 de preço das ações. Mas quando aplicado a um ESO, uma empresa pode reduzir a entrada real de 10 anos para uma vida esperada mais curta. Para o exemplo acima, reduzir o prazo de 10 anos para uma vida esperada de cinco anos traz o valor até cerca de 45 de valor nominal (e uma redução de pelo menos 10-20 é típica ao reduzir o prazo para a vida esperada). Finalmente, a empresa consegue fazer uma redução no corte de cabelo em antecipação a confisco devido à rotatividade de funcionários. A este respeito, um corte de cabelo adicional de 5-15 seria comum. Então, em nosso exemplo, o 45 seria ainda mais reduzido a uma despesa de cerca de 30-40 do preço das ações. Depois de adicionar volatilidade e, em seguida, subtrair-se por um prazo reduzido de vida esperada e perda esperada, estamos quase de volta ao valor mínimo ESOs: Usando o Binomial ModelERIs Calculadora Black-Scholes Esta calculadora online usa a equação de Black-Scholes pelo valor justo de um Opção de compra europeia em um estoque que não paga dividendos, da seguinte forma: Uma opção de chamada europeia só pode ser exercida no prazo de validade. Isso contrasta com as opções americanas que podem ser exercidas em qualquer momento antes do vencimento. Uma opção europeia é usada para reduzir as variáveis na equação. Isso é aceitável, uma vez que a maioria das opções de compra de ações da empresa norte-americana não são exercidas até a data de expiração (aquisição). Por que, quando um funcionário faz uma chamada cedo, ele perde o valor do tempo restante na chamada e cobra apenas o valor intrínseco. Disclaimer: Esta Calculadora Black-Scholes não se destina como base para decisões comerciais. Nenhuma responsabilidade é assumida por sua correção ou adequação para qualquer propósito. Use por sua conta e risco. Para saber mais sobre como usar o método Black-Scholes para colocar um valor nas opções de estoque, consulte o curso on-line do Centro de Aprendizado a Distância ERI, Black-Scholes Valuations. Definições Black Scholes relevantes (todos os valores são por ação) O Modelo de Preços de Opções Black Scholes determina o valor justo de mercado das opções européias, mas também pode ser usado para valorizar as opções americanas. A fórmula atual pode ser vista aqui. Stock Asset Price Um preço atual das ações, negociado publicamente ou estimado. Preço de exercicio de opção Preço pré-determinado (pelo escritor de opções) no qual uma compra de opções é comprada ou vendida. Maturidade (Tempo até a expiração) Tempo restante para a data de validade da opção. Taxa de juros sem risco Taxa de juros atual dos títulos públicos de curto prazo, como as do Tesouro dos EUA. Grau de mudança imprevisível ao longo do tempo de um preço das ações de opções, muitas vezes expresso como o desvio padrão do preço das ações. Valor justo no mercado norte-americano de uma opção exercida no vencimento. Uma opção de compra dá ao comprador (titular da opção) o direito de comprar ações do vendedor (o escritor da opção) ao preço de exercício. Valor justo no mercado norte-americano de uma opção exercida no vencimento. Uma opção de venda oferece ao comprador (titular da opção) o direito de vender as ações compradas para o escritor da opção ao preço de exercício. Uma opção europeia só pode ser exercida no prazo de validade. Uma opção americana pode ser exercida a qualquer momento durante a vida da opção. No entanto, na maioria dos casos, é aceitável valorizar uma opção americana usando o modelo de Black Scholes, porque as opções americanas raramente são exercidas antes da data de validade. Fórmulas de Excel de Limack-Scholes e como criar uma planilha de preços de opções simples Esta página é um guia para Criando sua própria opção de cálculo de preço na planilha do Excel, de acordo com o modelo Black-Scholes (prorrogado para dividendos pela Merton). Aqui você pode obter uma calculadora pré-fabricada Black-Scholes Excel com gráficos e recursos adicionais, como cálculos de parâmetros e simulações. Black-Scholes no Excel: a grande imagem Se você não está familiarizado com o modelo Black-Scholes, seus parâmetros e (pelo menos a lógica de) as fórmulas, você pode querer ver esta página. Abaixo vou mostrar-lhe como aplicar as fórmulas Black-Scholes no Excel e como juntá-las em uma planilha simples de preços de opções. Existem 4 etapas: células de design onde você entrará os parâmetros. Calcule d1 e d2. Calcule os preços das opções de compra e colocação. Calcule a opção Gregos. Parâmetros Black-Scholes no Excel Primeiro você precisa projetar 6 células para os 6 parâmetros Black-Scholes. Ao avaliar uma determinada opção, você terá que inserir todos os parâmetros nessas células no formato correto. Os parâmetros e formatos são: S 0 preço subjacente (USD por ação) X preço de exercício (USD por ação) r taxa de juros sem risco ajustada contínua (pa) q rendimento de dividendos continuamente composto (pa) t tempo de vencimento (do ano) O preço subjacente é o preço ao qual o título subjacente está sendo negociado no mercado no momento em que você está fazendo o preço da opção. Insira em dólares (ou eurosyenpound, etc.) por ação. Preço de greve. Também chamado de preço de exercício, é o preço pelo qual você irá comprar (se for chamado) ou vender (se colocar) o título subjacente se você optar por exercer a opção. Se você precisar de mais explicações, veja: Strike vs. Market Price vs. Underlyings Price. Digite também em dólares por ação. A volatilidade é o parâmetro mais difícil de estimar (todos os outros parâmetros são mais ou menos dados). É seu trabalho decidir qual a alta volatilidade que você espera e qual o número para entrar no modelo de Black-Scholes, nem esta página irá dizer-lhe como a alta volatilidade esperada com sua opção particular. Ser capaz de estimar (prever) a volatilidade com mais sucesso do que outras pessoas é a parte mais difícil e o fator-chave que determina o sucesso ou o fracasso na negociação de opções. O importante aqui é inseri-lo no formato correto, que é p. a. (Percentual anualizado). A taxa de juros livre de risco deve ser inserida na p. a. Composto de forma contínua. O tenor de taxas de juros (prazo de vencimento) deve corresponder ao tempo até o vencimento da opção que você está classificando. Você pode interpolar a curva de rendimento para obter a taxa de juros para o seu horário exato de expiração. A taxa de juros não afeta o preço da opção resultante muito no ambiente de baixo interesse, que nós temos nos últimos anos, mas pode se tornar muito importante quando as taxas são mais altas. O rendimento do dividendo também deve ser inserido na p. a. Composto de forma contínua. Se o estoque subjacente não pagar qualquer dividendo, digite zero. Se você estiver classificando uma opção em títulos que não sejam ações, você pode inserir a taxa de juros do segundo país (para opções de FX) ou o rendimento de conveniência (para commodities) aqui. O tempo de vencimento deve ser inserido a partir do ano entre o momento do preço (agora) e o vencimento da opção. Por exemplo, se a opção expirar em 24 dias de calendário, você entrará 243656.58. Alternativamente, você pode querer medir o tempo em dias de negociação em vez de dias de calendário. Se a opção expirar em 18 dias de negociação e há 252 dias de negociação por ano, você entrará no prazo de vencimento como 182527.14. Além disso, você também pode ser mais preciso e medir o tempo de expiração para horas ou até mesmo minutos. Em qualquer caso, você deve sempre expressar o tempo de vencimento a partir do ano para que os cálculos devam retornar os resultados corretos. Eu vou ilustrar os cálculos no exemplo abaixo. Os parâmetros estão nas células A44 (preço subjacente), B44 (preço de operação), C44 (volatilidade), D44 (taxa de juros), E44 (rendimento de dividendos) e G44 (prazo de vencimento a partir do ano). Nota: É a linha 44, porque estou usando a Calculadora Black-Scholes para capturas de tela. Você pode, naturalmente, começar na linha 1 ou organizar seus cálculos em uma coluna. Black-Scholes d1 e d2 Excel Formulas Quando você tem as células com parâmetros prontos, o próximo passo é calcular d1 e d2, pois esses termos entram todos os cálculos de chamadas e colocam os preços das opções e os gregos. As fórmulas para d1 e d2 são: Todas as operações nessas fórmulas são matemáticas relativamente simples. As únicas coisas que podem ser desconhecidas para alguns usuários de Excel menos esclarecidos são o logaritmo natural (função LN Excel) e a raiz quadrada (função SQRT Excel). O mais difícil na fórmula d1 é garantir que você coloque os suportes nos lugares certos. É por isso que você pode querer calcular partes individuais da fórmula em células separadas, como eu faço no exemplo abaixo: Primeiro eu calculo o logaritmo natural da proporção de preço subjacente e preço de exercício na célula H44: então eu calculo o resto de O numerador da fórmula d1 na célula I44: então eu calculo o denominador da fórmula d1 na célula J44. É útil calcular isso separadamente, porque este termo também entrará na fórmula para d2: agora tenho todas as três partes da fórmula d1 e posso combiná-las na célula K44 para obter d1: Finalmente, eu calculo d2 em Célula L44: Black-Scholes Option Price Fórmulas Excel As fórmulas Black-Scholes para opção de compra (C) e os preços de opção de venda (P) são: As duas fórmulas são muito semelhantes. Existem quatro termos em cada fórmula. Eu os calcularei novamente em células separadas primeiro e depois as combinarei na última chamada e colocarei fórmulas. N (d1), N (d2), N (-d2), N (-d1) As partes potencialmente desconhecidas das fórmulas são N (d1), N (d2), N (-d2) e N (-d1 ) Termos. N (x) denota a função de distribuição cumulativa normal padrão 8211, por exemplo, N (d1) é a função de distribuição cumulativa padrão normal para o d1 que você calculou no passo anterior. No Excel, você pode calcular facilmente as funções padrão de distribuição cumulativa normal usando a função NORM. DIST, que possui 4 parâmetros: NORM. DIST (x, mean, standarddev, cumulative) x link para a célula onde você calculou d1 ou d2 (com Sinal de menos para - d1 e - d2) significa enter 0, porque é padrão standarddev de distribuição normal entrar 1, porque é normal distribuição normal cumulativa digite TRUE, pois é cumulativa Por exemplo, eu calculo N (d1) na célula M44: Nota: Também existe a função NORM. S.DIST no Excel, que é a mesma que NORM. DIST com o meio fixo 0 e o standarddev 1 (portanto, você insere apenas dois parâmetros: x e cumulativo). Você pode usar o Im mais usado para NORM. DIST, o que proporciona maior flexibilidade. Os Termos com Funções Exponentes Os expoentes (termos e-qt e e-rt) são calculados usando a função EXP Excel com - qt ou - rt como parâmetro. Eu calculo e-rt na célula Q44: então eu uso isso para calcular X e-rt na célula R44: de forma análoga, eu calculo e-qt na célula S44: então eu uso isso para calcular S0 e-qt na célula T44: Agora eu Tem todos os termos individuais e posso calcular a chamada final e colocar o preço da opção. Black-Scholes Call Option Price no Excel Eu combino os 4 termos na fórmula de chamada para obter o preço da opção de compra na célula U44: Black-Scholes Put Option Price no Excel Combino os 4 termos na fórmula put para obter o preço da opção de venda na célula U44: Black-Scholes Greeks Excel Formulas Aqui você pode continuar para a segunda parte, o que explica as fórmulas para delta, gamma, theta, vega e rho no Excel: Ou você pode ver como todos os cálculos do Excel funcionam juntos no Black - Calculadora de Scholes. Explicação dos outros recursos da calculadora8217s (cálculos de parâmetros e simulações de preços de opções e gregos) estão disponíveis no guia PDF em anexo. Ao permanecer neste site e usando o conteúdo do Macroption, você confirma que leu e concorda com o Contrato de Termos de Uso, como se você o assinasse. O Acordo também inclui Política de Privacidade e Política de Cookies. Se você não concorda com nenhuma parte deste Contrato, deixe o site e pare de usar qualquer conteúdo Macroption agora. Todas as informações são apenas para fins educacionais e podem ser imprecisas, incompletas, desatualizadas ou erradas. A Macroption não é responsável por quaisquer danos resultantes da utilização do conteúdo. Nenhum conselho financeiro, de investimento ou comercial é dado a qualquer momento. Copie 2017 Macroption ndash Todos os direitos reservados.
Комментариев нет:
Отправить комментарий