четверг, 21 июня 2018 г.

Média de benefícios de média ponderada


Net. sourceforge. openforecast. models Classe WeightedMovingAverageModel Um modelo de previsão média móvel ponderada é baseado em uma série temporal artificialmente construída, na qual o valor de um determinado período de tempo é substituído pela média ponderada desse valor e pelos valores de algum número de tempo anterior Períodos. Como você pode ter adivinhado a partir da descrição, este modelo é mais adequado para dados da série temporal, ou seja, dados que mudam ao longo do tempo. Uma vez que o valor da previsão para um determinado período é uma média ponderada dos períodos anteriores, a previsão sempre parecerá atrasada por aumentos ou diminuições nos valores observados (dependentes). Por exemplo, se uma série de dados tiver uma tendência ascendente notável, então uma previsão média móvel ponderada geralmente fornecerá uma subestimação dos valores da variável dependente. O modelo de média móvel ponderada, como o modelo de média móvel, tem uma vantagem em relação a outros modelos de previsão, na medida em que ele suaviza picos e depressões (ou vales) em um conjunto de observações. No entanto, como o modelo de média móvel, ele também possui várias desvantagens. Em particular, este modelo não produz uma equação real. Portanto, não é tão útil como uma ferramenta de previsão de longo alcance. Só pode ser usado de forma confiável para prever alguns períodos no futuro. Desde: 0.4 Autor: Steven R. Gould Campos herdados da classe net. sourceforge. openforecast. models. AbstractForecastingModel WeightedMovingAverageModel () Constrói um novo modelo de previsão média móvel ponderada. WeightedMovingAverageModel (pesos duplos) Constrói um novo modelo de previsão média móvel ponderada, usando os pesos especificados. Previsão (double timeValue) Retorna o valor de previsão da variável dependente para o valor dado da variável de tempo independente. GetForecastType () Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. GetNumberOfPeriods () Retorna o número atual de períodos usados ​​neste modelo. GetNumberOfPredictors () Retorna o número de preditores usados ​​pelo modelo subjacente. SetWeights (pesos duplos) Define os pesos utilizados por este modelo de previsão média móvel ponderada para os pesos dados. ToString () Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Métodos herdados da classe net. sourceforge. openforecast. models. AbstractTimeBasedModel WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada, usando os pesos especificados. Para que um modelo válido seja construído, você deve chamar init e passar um conjunto de dados contendo uma série de pontos de dados com a variável de tempo inicializada para identificar a variável independente. O tamanho da matriz de pesos é usado para determinar o número de observações a serem utilizadas para calcular a média móvel ponderada. Além disso, o período mais recente receberá o peso definido pelo primeiro elemento da matriz, isto é, pesos0. O tamanho da matriz de pesos também é usado para determinar a quantidade de períodos futuros que podem ser efetivamente previstos. Com uma média móvel ponderada de 50 dias, não podemos razoavelmente - com algum grau de precisão - prever mais de 50 dias além do último período para o qual os dados estão disponíveis. Até a previsão próxima ao final deste intervalo provavelmente não será confiável. Nota sobre pesos Em geral, os pesos passados ​​para este construtor devem somar até 1.0. No entanto, como uma conveniência, se a soma dos pesos não for igual a 1,0, esta implementação dimensiona todos os pesos proporcionalmente para que eles somem para 1,0. Parâmetros: pesos - um conjunto de pesos a atribuir às observações históricas ao calcular a média móvel ponderada. WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada, usando a variável nomeada como a variável independente e os pesos especificados. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. Pesos - uma série de pesos para atribuir às observações históricas ao calcular a média móvel ponderada. WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada. Este construtor destina-se a ser usado apenas por subclasses (portanto, está protegido). Qualquer subclasse usando este construtor deve invocar o método setWeights (protegido) subseqüentemente para inicializar os pesos a serem usados ​​por este modelo. WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada usando a variável independente fornecida. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. SetWeights Define os pesos utilizados por este modelo de previsão média móvel ponderada para os pesos dados. Este método destina-se a ser usado apenas por subclasses (portanto, está protegido), e somente em conjunto com o construtor (protegido) de um argumento. Qualquer subclasse que utilize o construtor de um argumento deve subseqüentemente chamar setWeights antes de invocar o método AbstractTimeBasedModel. init (net. sourceforge. openforecast. DataSet) para inicializar o modelo. Nota sobre pesos Em geral, os pesos passados ​​para este método devem somar até 1.0. No entanto, como uma conveniência, se a soma dos pesos não for igual a 1,0, esta implementação dimensiona todos os pesos proporcionalmente para que eles somem para 1,0. Parâmetros: pesos - um conjunto de pesos a atribuir às observações históricas ao calcular a média móvel ponderada. Retorna o valor de previsão da variável dependente para o valor dado da variável de tempo independente. As subclasses devem implementar este método de forma consistente com o modelo de previsão que implementam. As subclasses podem fazer uso dos métodos getForecastValue e getObservedValue para obter previsões e observações anteriores, respectivamente. Especificado por: previsão na classe AbstractTimeBasedModel Parâmetros: timeValue - o valor da variável de tempo para o qual um valor de previsão é necessário. Retorna: o valor de previsão da variável dependente para o tempo determinado. Lances: IllegalArgumentException - se houver dados históricos insuficientes - observações passadas para init - para gerar uma previsão para o valor de tempo determinado. GetNumberOfPredictors Retorna o número de preditores usados ​​pelo modelo subjacente. Retorna: o número de preditores utilizados pelo modelo subjacente. GetNumberOfPeriods Retorna o número atual de períodos usados ​​neste modelo. Especificado por: getNumberOfPeriods na classe AbstractTimeBasedModel Retorna: o número atual de períodos usados ​​neste modelo. GetForecastType Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. Mantenha isso curto. Uma descrição mais longa deve ser implementada no método toString. Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Especificado por: toString na interface ForecastingModel Overrides: toString na classe AbstractTimeBasedModel Returns: uma representação de cadeia do modelo de previsão atual e seus parâmetros. OANDA usa cookies para tornar nossos sites fáceis de usar e personalizados para nossos visitantes. Os cookies não podem ser usados ​​para identificá-lo pessoalmente. Ao visitar o nosso site, você aceita o uso de cookies da OANDA8217 de acordo com nossa Política de Privacidade. Para bloquear, excluir ou gerenciar cookies, visite aboutcookies. org. A restrição de cookies impedirá que você se beneficie de algumas das funcionalidades do nosso site. Baixe o nosso Mobile Apps Select conta: ampltiframe src4489469.fls. doubleclick. netactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 mcesrc4489469.fls. doubleclick. netactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 width1 height1 frameborder0 styledisplay: nenhum mcestyledisplay: noneampgtampltiframeampgt Lição 1: médias móveis vantagens da utilização de médias móveis Médias móveis suavizar as flutuações das taxas de mercado que muitas vezes Ocorre com cada período de relatório em um gráfico de preços. Quanto mais freqüentes forem as atualizações de tarifas - ou seja, quanto mais freqüentemente o gráfico de preços exibe uma taxa atualizada - maior o potencial de ruído do mercado. Para os comerciantes que lidam com um mercado em rápido movimento que está variando ou se deslocando para cima e para baixo, o potencial de falsos sinais é uma preocupação constante. Comparação da média móvel de 20 períodos com as taxas de mercado em tempo real Quanto maior o grau de volatilidade dos preços, maior a chance de gerar um sinal falso. Um sinal falso ocorre quando parece que a tendência atual está prestes a reverter, mas o próximo período de relatório prova que o que inicialmente pareceu ser uma reversão foi, de fato, uma flutuação do mercado. Como o número de períodos de relatório afeta a média móvel O número de períodos de relatório incluídos no cálculo da média móvel afeta a linha da média móvel como mostrado em um gráfico de preços. Quanto menor os pontos de dados (ou seja, os períodos de relatório) incluídos na média, quanto mais a média móvel permanecerá na taxa spot, reduzindo seu valor e oferecendo um pouco mais de visão sobre a tendência geral do que o próprio gráfico de preços. Por outro lado, uma média móvel que inclui muitos pontos afim as flutuações de preços até certo ponto que você não pode detectar uma tendência de taxa discernível. Qualquer situação pode dificultar o reconhecimento de pontos de reversão em tempo suficiente para tirar proveito de uma inversão de tendência de taxa. Gráfico de preços do castiçal mostrando três linhas de médias móveis diferentes Período de relatório - Uma referência genérica usada para descrever a freqüência pela qual os dados da taxa de câmbio são atualizados. Também referido como granularidade. Isso pode variar de um mês, um dia, uma hora - mesmo com a frequência de cada poucos segundos. A regra de ouro é que quanto mais curto for o tempo que você tiver negócios aberto, mais freqüentemente você deve recuperar dados de troca de taxa. 169 1996 - 2017 OANDA Corporation. Todos os direitos reservados. A família de marcas OANDA, fxTrade e OANDAs fx são de propriedade da OANDA Corporation. Todas as outras marcas registradas que aparecem neste site são propriedade de seus respectivos proprietários. A negociação com alavancagem em contratos de moeda estrangeira ou outros produtos off-exchange na margem traz um alto nível de risco e pode não ser adequado para todos. Recomendamos que você considere cuidadosamente se o comércio é apropriado para você à luz de suas circunstâncias pessoais. Você pode perder mais do que você investir. As informações sobre este site são de natureza geral. Recomendamos que você procure conselhos financeiros independentes e assegure-se de compreender plenamente os riscos envolvidos antes da negociação. Negociar através de uma plataforma online traz riscos adicionais. Consulte aqui nossa seção legal. As apostas de propagação financeira estão disponíveis apenas para os clientes da OANDA Europe Ltd que residem no Reino Unido ou na República da Irlanda. CFDs, capacidades de cobertura MT4 e rácios de alavancagem superiores a 50: 1 não estão disponíveis para residentes dos EUA. A informação neste site não é dirigida a residentes em países onde sua distribuição ou uso por qualquer pessoa seria contrária à legislação ou regulamentação local. A OANDA Corporation é uma negociante de câmbio mercantil e varejista registrada da Comissão de Futuros com a Commodity Futures Trading Commission e é membro da National Futures Association. Não: 0325821. Por favor, consulte a NFA FOREX INVESTOR ALERT, onde apropriado. OANDA (Canadá) Corporation As contas ULC estão disponíveis para qualquer pessoa com uma conta bancária canadense. OANDA (Canadá) Corporation A ULC é regulada pela Organização Reguladora do Indústria do Investimento do Canadá (OCRCVM), que inclui o banco de dados do conselheiro on-line da IIROCs (Relatório do conselheiro da IIROC) e as contas dos clientes são protegidas pelo Fundo Canadense de Proteção ao Investidor dentro dos limites especificados. Uma brochura que descreve a natureza e os limites da cobertura está disponível mediante solicitação ou em cipf. ca. A OANDA Europe Limited é uma empresa registrada na Inglaterra número 7110087, e tem sua sede no Floor 9a, Tower 42, 25 Old Broad St, Londres EC2N 1HQ. É autorizado e regulado pela Autoridade de Conduta Financeira160. Não: 542574. OANDA Asia Pacific Pte Ltd (Co. Reg. No 200704926K) possui uma Licença de Serviços de Mercados de Capitais emitida pela Autoridade Monetária de Cingapura e também é licenciada pela International Enterprise Singapore. A OANDA Australia Pty Ltd 160 é regulada pela Comissão de Valores Mobiliários e Investimentos da ASIC (ABN 26 152 088 349, AFSL nº 412981) e é o emissor dos produtos e / ou serviços neste site. É importante para você considerar o atual Guia de Serviços Financeiros (FSG). Declaração de divulgação do produto (PDS). Termos de conta e outros documentos OANDA relevantes antes de tomar decisões de investimento financeiro. Estes documentos podem ser encontrados aqui. OANDA Japan Co. Ltd. Primeiro Diretor de Negócios Financeiros de Tipo I do Kanto Local Financial Bureau (Kin-sho) Nº 2137 do Instituto de Futuros Financeiros número 1571. Negociação FX e CFDs na margem é de alto risco e não é adequado para todos. As perdas podem exceder o investimento. Médias móveis equilibradas: o básico Ao longo dos anos, os técnicos encontraram dois problemas com a média móvel simples. O primeiro problema reside no período de tempo da média móvel (MA). A maioria dos analistas técnicos acredita que a ação de preço. O preço das ações de abertura ou fechamento, não é suficiente para depender para prever adequadamente comprar ou vender sinais da ação de cruzamento de MAs. Para resolver este problema, os analistas agora atribuem mais peso aos dados de preços mais recentes usando a média móvel suavemente exponencial (EMA). (Saiba mais em Explorando a média móvel ponderada exponencialmente.) Um exemplo Por exemplo, usando um MA de 10 dias, um analista tomaria o preço de fechamento do 10º dia e multiplicaria esse número por 10, o nono dia por nove, o oitavo Dia por oito e assim por diante para o primeiro do MA. Uma vez que o total foi determinado, o analista dividiria o número pela adição dos multiplicadores. Se você adicionar os multiplicadores do exemplo MA de 10 dias, o número é 55. Este indicador é conhecido como a média móvel linearmente ponderada. (Para leitura relacionada, verifique as Médias móveis simples, faça as tendências se destacarem.) Muitos técnicos são crentes firmes na média móvel suavemente exponencial (EMA). Este indicador foi explicado de muitas maneiras diferentes que confunde estudantes e investidores. Talvez a melhor explicação venha de John J. Murphys Análise Técnica dos Mercados Financeiros (publicado pelo New York Institute of Finance, 1999): a média móvel suavemente exponencial aborda os dois problemas associados à média móvel simples. Primeiro, a média exponencialmente suavizada atribui um peso maior aos dados mais recentes. Portanto, é uma média móvel ponderada. Mas, enquanto atribui menor importância aos dados de preços passados, ele inclui no cálculo de todos os dados da vida útil do instrumento. Além disso, o usuário pode ajustar a ponderação para dar maior ou menor peso ao preço dos dias mais recentes, que é adicionado a uma porcentagem do valor dos dias anteriores. A soma de ambos os valores percentuais é de 100. Por exemplo, o preço dos últimos dias pode ser atribuído a um peso de 10 (.10), que é adicionado aos dias anteriores de peso de 90 (.90). Isso dá o último dia 10 da ponderação total. Este seria o equivalente a uma média de 20 dias, ao dar ao preço dos últimos dias um valor menor de 5 (0,05). Figura 1: Média em Movimento Suavizado Exponencialmente O gráfico acima mostra o Índice Composto Nasdaq desde a primeira semana de agosto de 2000 até 1º de junho de 2001. Como você pode ver claramente, o EMA, que neste caso está usando os dados de preço de fechamento ao longo de um Período de nove dias, tem sinais de venda definitivos no 8 de setembro (marcado por uma seta para baixo preta). Este foi o dia em que o índice caiu abaixo do nível de 4.000. A segunda seta preta mostra outra perna para baixo que os técnicos estavam realmente esperando. A Nasdaq não conseguiu gerar volume e interesse dos investidores de varejo para quebrar a marca de 3.000. Ele então mergulhou de novo para baixo em 1619.58 em 4 de abril. A tendência de alta de 12 de abril é marcada por uma seta. Aqui, o índice fechou em 1.961,46, e os técnicos começaram a ver os gerentes de fundos institucionais começar a retirar algumas pechinchas como a Cisco, a Microsoft e alguns dos problemas relacionados à energia. (Leia nossos artigos relacionados: Envelopes médios móveis: Refinando uma ferramenta de comércio popular e um salto médio em movimento.)

Комментариев нет:

Отправить комментарий