суббота, 16 июня 2018 г.

Moving average using matlab


Usando o MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e acrescentar a média móvel a essa matriz, estou tentando calcular a média móvel de 3 dias de baixo para o topo da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: tentei implementar o comando conv, mas recebo um erro. Aqui está o comando conv que eu tentei usar na 2ª coluna da matriz a: A saída que eu desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu apreciaria muito. Obrigado Para a coluna 2 da matriz a, eu estou informando a média móvel de 3 dias da seguinte forma e colocando o resultado na coluna 4 da matriz a (I renomeou a matriz a como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14 e 11 é de 14 a média de 3 dias de 14, 11, 8 é 11, a média de 3 dias de 11, 8, 5 é de 8 e a média de 3 dias de 8, 5, 2 é 5. Não há valor nas 2 linhas inferiores para a 4ª coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faça sentido ndash Aaron 12 de junho 13 às 1:28 Em geral, isso ajudaria se você mostrar o erro. Neste caso, você está fazendo duas coisas erradas: primeiro sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Em segundo lugar, observe o tamanho de c. Você não pode simplesmente se encaixar em c. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você deseja. Em vez disso, você é obrigado a usar um par de linhas: Criado em quarta-feira, 08 de outubro de 2008 20:04 Atualizado em quinta-feira, 14 de março de 2013 01:29 Escrito por Batuhan Osmanoglu Acessos: 41146 Média em movimento em Matlab Muitas vezes me encontro com necessidade de Com a média dos dados que tenho para reduzir um pouco o ruído. Eu escrevi algumas funções para fazer exatamente o que eu quero, mas os matlabs criados na função de filtro funcionam muito bem também. Aqui vou escrever sobre dados em média 1D e 2D. O filtro 1D pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente de numerador para o filtro (b), o coeficiente de denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como funciona o filtro, você pode digitar: Aqui está uma implementação rápida e suja de um filtro médio 16 por 16 em movimento. Primeiro precisamos definir o filtro. Como tudo o que queremos é contribuição igual de todos os vizinhos, podemos usar apenas a função. Nós dividimos tudo com 256 (1616), uma vez que não queremos alterar o nível geral (amplitude) do sinal. Para aplicar o filtro, podemos simplesmente dizer o seguinte. Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso, Range está no eixo Y e o Azimuth é mapeado no eixo X. O filtro tinha 4 pixels de largura em alcance e 16 pixels de largura em Azimuth.29 Setembro de 2013 Média em movimento pela convolução O que é média móvel e para o que é bom Como a média móvel é feita usando a convolução A média móvel é uma operação simples usada geralmente para Suprimir o ruído de um sinal: estabelecemos o valor de cada ponto para a média dos valores em sua vizinhança. Por uma fórmula: Aqui x é a entrada e y é o sinal de saída, enquanto o tamanho da janela é w, supostamente estranho. A fórmula acima descreve uma operação simétrica: as amostras são retiradas de ambos os lados do ponto real. Abaixo está um exemplo da vida real. O ponto em que a janela é colocada é realmente vermelho. Valores fora de x devem ser zeros: para brincar e ver os efeitos da média móvel, dê uma olhada nesta demonstração interativa. Como fazê-lo por convolução Como você pode ter reconhecido, o cálculo da média móvel simples é semelhante à convolução: em ambos os casos, uma janela é deslizada ao longo do sinal e os elementos na janela são resumidos. Então, tente dar o mesmo ao usar a convolução. Use os seguintes parâmetros: A saída desejada é: Como primeira abordagem, vamos tentar o que obtem ao convolver o sinal x pelo seguinte k kernel: a saída é exatamente três vezes maior do que o esperado. Também pode ser visto que os valores de saída são o resumo dos três elementos na janela. É porque durante a convolução a janela é deslizada, todos os elementos nele são multiplicados por um e depois resumidos: yk 1 cdot x 1 cdot x 1 cdot x Para obter os valores desejados de y. A saída deve ser dividida por 3: por uma fórmula que inclua a divisão: Mas não seria o ideal para fazer a divisão durante a convolução. Aqui vem a idéia ao reorganizar a equação: então usaremos o seguinte k kernel: desta forma, vamos Obtenha o resultado desejado: Em geral: se queremos fazer uma média móvel por convolução com um tamanho de janela de w. Devemos usar o seguinte k kernel: uma função simples que faz a média móvel é: um exemplo de uso é:

Комментариев нет:

Отправить комментарий