суббота, 12 мая 2018 г.

Movimento ponderado exponencial média volatilidade excel


É a correlação da amostra entre X e Y no tempo t. É a covariância ponderada exponencial de amostra entre X e Y no instante t. É a amostra de volatilidade ponderada exponencial para a série temporal X no tempo t. É a volatilidade ponderada exponencial da amostra para a série temporal Y no tempo t. É o fator de suavização usado nos cálculos de volatilidade ponderada exponencial e covariância. Se os conjuntos de dados de entrada não tiverem um significado zero, a função EWXCF Excel remove a média de cada amostra de dados em seu nome. O EWXCF usa a volatilidade do EWMA e as representações EWCOV que não assumem uma volatilidade média (ou covariância) de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, o EWXCF retorna um valor constante. Referências Hull, John C. Opções, Futuros e Outros Derivados Financial Times Prentice Hall (2003), pp 385-387, ISBN 1-405-886145 Hamilton, J. D. Análise de séries temporais. Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S. Análise da série temporária financeira John Wiley amp SONS. (2005), ISBN 0-471-690740 Links Relacionados Como calcular as médias móveis ponderadas no Excel Usando o Suavização Exponencial Análise de Dados do Excel para Dummies, 2ª Edição A ferramenta Exponencial de Suavização no Excel calcula a média móvel. No entanto, os pesos de suavização exponencial são os valores incluídos nos cálculos da média móvel, de modo que os valores mais recentes têm um efeito maior no cálculo médio e os valores antigos têm um efeito menor. Essa ponderação é realizada através de uma constante de suavização. Para ilustrar como a ferramenta Exponential Smoothing funciona, suponha que you8217re volte a olhar a informação diária média de temperatura. Para calcular médias móveis ponderadas usando o suavização exponencial, execute as seguintes etapas: Para calcular uma média móvel suavemente exponencial, primeiro clique no botão de comando Análise de Dados tab8217s Data. Quando o Excel exibe a caixa de diálogo Análise de dados, selecione o item Suavização exponencial da lista e clique em OK. O Excel exibe a caixa de diálogo Suavização exponencial. Identifique os dados. Para identificar os dados para os quais deseja calcular uma média móvel suavemente exponencial, clique na caixa de texto Intervalo de entrada. Em seguida, identifique o intervalo de entrada, digitando um endereço de faixa de planilha ou selecionando o intervalo da planilha. Se o seu intervalo de entrada incluir um rótulo de texto para identificar ou descrever os dados, marque a caixa de seleção Etiquetas. Forneça a constante de suavização. Digite o valor constante de suavização na caixa de texto Fator de Damping. O arquivo de Ajuda do Excel sugere que você use uma constante de suavização entre 0,2 e 0,3. Presumivelmente, no entanto, se você estiver usando essa ferramenta, você tem suas próprias idéias sobre o que é a constante de suavização correta. (Se você não tiver dúvidas sobre a constante de suavização, talvez você não precise usar essa ferramenta.) Diga ao Excel onde colocar os dados médios móveis suavemente exponencial. Use a caixa de texto do intervalo de saída para identificar o intervalo da planilha na qual deseja colocar os dados médios móveis. No exemplo da planilha, por exemplo, você coloca os dados médios móveis no intervalo da planilha B2: B10. (Opcional) Gráfico dos dados suavizados exponencialmente. Para traçar os dados exponencialmente suavizados, selecione a caixa de seleção Gráfico. (Opcional) Indique que deseja obter informações de erro padrão calculadas. Para calcular erros padrão, selecione a caixa de seleção Erros padrão. Excel coloca valores de erro padrão ao lado dos valores médios móveis suavemente exponencial. Depois de terminar de especificar qual a média móvel que deseja calcular e onde deseja que ela seja colocada, clique em OK. O Excel calcula a informação média móvel. Explicando A Volatilidade Média Mover Ponderada Exponencialmente é a medida de risco mais comum, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para avaliar o risco futuro.) Usamos os dados atuais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque de dados. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Vs históricos. Volatilidade implícita Primeiro, colocamos essa métrica em um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites da Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando o Volatility To Gauge Future Risk), mostramos que sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de Yesterdays (muito recente) não tem mais influência na variação do que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0,94) (94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o peso do terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários sobre o preço das ações. Isso é 509 devoluções diárias e 1509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de tomar a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias de Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que toda a série se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longo prazo. A variação de hoje (sob EWMA) é igual a variância de ontem (ponderada por lambda) mais retorno quadrado de ontem (pesado por menos a lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e atraso de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados ​​menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variação historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo será diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.) A Relação Sharpe é uma medida para calcular o retorno ajustado ao risco, e esse índice tornou-se o padrão da indústria para tal. O capital de giro é uma medida da eficiência da empresa e da saúde financeira de curto prazo. O capital de giro é calculado. A Agência de Proteção Ambiental (EPA) foi criada em dezembro de 1970 sob o presidente dos Estados Unidos, Richard Nixon. O. Um regulamento implementado em 1 de janeiro de 1994, que diminuiu e eventualmente eliminou as tarifas para incentivar a atividade econômica. Um padrão contra o qual o desempenho de um fundo de segurança, fundo mútuo ou gerente de investimentos pode ser medido. Carteira móvel é uma carteira virtual que armazena informações do cartão de pagamento em um dispositivo móvel.

Комментариев нет:

Отправить комментарий