Qual a diferença entre a média móvel e a média móvel ponderada Uma média móvel de 5 períodos, com base nos preços acima, seria calculada pela seguinte fórmula: com base na equação acima, o preço médio durante o período acima mencionado foi de 90,66. O uso de médias móveis é um método eficaz para eliminar fortes flutuações de preços. A limitação chave é que os pontos de dados de dados mais antigos não são ponderados de forma diferente dos pontos de dados próximos ao início do conjunto de dados. É aqui que as médias móveis ponderadas entram em jogo. As médias ponderadas atribuem uma ponderação mais pesada a pontos de dados mais atuais, uma vez que são mais relevantes do que os pontos de dados no passado distante. A soma da ponderação deve somar até 1 (ou 100). No caso da média móvel simples, as ponderações são igualmente distribuídas, razão pela qual elas não são mostradas na tabela acima. Preço de encerramento da AAPLImportante informação legal sobre o e-mail que você enviará. Ao usar este serviço, você concorda em inserir seu endereço de e-mail real e apenas enviá-lo para pessoas que você conhece. É uma violação da lei em algumas jurisdições se identificar falsamente em um e-mail. Todas as informações fornecidas serão utilizadas pela Fidelity exclusivamente para enviar o e-mail em seu nome. A linha de assunto do e-mail que você enviará será Fidelity: seu e-mail foi enviado. Fundos mútuos e investimentos em fundos mútuos - Fidelity Investments Ao clicar em um link, será aberta uma nova janela. Negociação em movimento com médias móveis Destaque esta ferramenta simples, mas poderosa, para desbloquear uma grande quantidade de informações em seus gráficos. Fidelity Active Trader News ndash 11212016 Análise Técnica Active Trader Pro Brokerage Stocks Entre todas as ferramentas de análise técnica à sua disposiçãoDow theory. MACD. Índice de força relativa. Castiçais japoneses. E as médias morendantes são uma das mais simples de entender e usar em sua estratégia. No entanto, eles também podem ser um dos indicadores mais significativos das tendências do mercado, sendo particularmente útil em mercados de tendências ascendentes (ou descendentes) como a tendência de alta de longo prazo que experimentamos desde 2009. Heres como você pode incorporar médias móveis para potencializar sua negociação proficiência. O que é uma média móvel Um meio é simplesmente a média de um conjunto de números. Uma média móvel é uma série de (tempo) significa que é uma média móvel porque, à medida que novos preços são feitos, os dados mais antigos são descartados e os dados mais recentes o substituem. Um estoque ou outros movimentos normais de segurança financeira podem às vezes ser voláteis, girando para cima ou para baixo, o que pode tornar um pouco difícil avaliar sua direção geral. O objetivo principal das médias móveis é suavizar os dados que você está revisando para ajudar a obter um senso mais claro da tendência (veja o gráfico abaixo). Uma média móvel suaviza o preço. Fonte: Active Trader Pro, a partir de 15 de novembro de 2016. Existem alguns tipos diferentes de médias móveis que os investidores geralmente usam. Média móvel simples (SMA). Um SMA é calculado adicionando todos os dados por um período de tempo específico e dividindo o total pelo número de dias. Se o estoque XYZ fechou às 30, 31, 30, 29 e 30 nos últimos cinco dias, a média móvel simples de 5 dias seria de 30. A média móvel exponencial (EMA). Também conhecida como média móvel ponderada, uma EMA atribui maior peso aos dados mais recentes. Muitos comerciantes preferem usar EMAs para colocar mais ênfase nos desenvolvimentos mais recentes. Média móvel centralizada. Também conhecida como uma média móvel triangular, uma média móvel centrada leva em conta o preço e o tempo colocando o maior peso no meio da série. Esse é o tipo de média móvel menos comumente usado. As médias móveis podem ser implementadas em todos os tipos de gráficos de preços (ou seja, linha, barra e castiçal). Eles também são um componente importante de outros indicadores como Bollinger Bands. Configurando médias móveis Ao configurar seus gráficos, adicionar médias móveis é muito fácil. No Fidelitys Active Trader Pro. Por exemplo, simplesmente abra um gráfico e selecione os indicadores no menu principal. Procure ou navegue para as médias móveis e selecione a que você gostaria adicionado ao gráfico. Você pode escolher entre diferentes indicadores de média móvel, incluindo uma média móvel simples ou exponencial. Você também pode escolher o período de tempo para a média móvel. Uma configuração comumente usada é aplicar uma média móvel exponencial de 50 dias e uma média móvel exponencial de 200 dias para um gráfico de preços. Como as médias móveis são usadas As médias móveis com prazos diferentes podem fornecer uma variedade de informações. Uma média móvel mais longa (como uma EMA de 200 dias) pode servir como um dispositivo de suavização valioso quando você está tentando avaliar tendências de longo prazo. Uma média móvel mais curta, como uma média móvel de 50 dias, seguirá mais de perto a ação de preço e, portanto, é freqüentemente usada para avaliar padrões de curto prazo. Cada média móvel pode servir de indicador de suporte e resistência, e é freqüentemente usada como um alvo de preço de curto prazo ou nível de chave. Como exatamente as médias móveis geram sinais comerciais As médias móveis são amplamente reconhecidas por muitos comerciantes como níveis potencialmente significativos de suporte e resistência. Se o preço estiver acima de uma média móvel, ele pode servir como um nível de apoio forte, se o estoque diminuir, o preço pode ter um tempo mais difícil caindo abaixo do nível de preço médio móvel. Alternativamente, se o preço estiver abaixo de uma média móvel, ele pode servir como um nível de resistência forte, se o estoque for aumentado, o preço poderá superar a média móvel. A cruz de ouro e a cruz da morte Duas médias móveis também podem ser usadas em combinação para gerar um poderoso sinal de troca cruzada. O método de crossover envolve a compra ou venda quando uma média móvel mais curta cruza uma média móvel mais longa. Um sinal de compra é gerado quando uma média em movimento rápido cruza acima de uma média lenta. Por exemplo, a cruz dourada ocorre quando uma média móvel, como a EMA de 50 dias, cruza acima de uma média móvel de 200 dias. Esse sinal pode ser gerado em um estoque individual ou em um amplo índice de mercado, como o SP 500. Usando o gráfico do SP 500 acima, o crossover mais recente foi uma cruz de ouro em abril de 2016 (veja o gráfico acima). O SP 500 ganhou cerca de 7 desde então, a partir de meados de novembro. Alternativamente, um sinal de venda é gerado quando uma média em movimento rápido cruza abaixo de uma média lenta. Esta cruz de morte ocorreria se uma média móvel de 50 dias, por exemplo, cruzasse abaixo uma média móvel de 200 dias. A última cruz da morte ocorreu no início de 2016. O próximo sinal de cruzamento possível, uma vez que a última foi uma cruz dourada, é uma cruz da morte. Médias móveis em ação e algumas dicas finais Como regra geral, lembre-se de que as médias móveis geralmente são mais úteis quando usadas durante as tendências elevatórias ou as tendências descendentes, e geralmente são menos úteis quando usadas em mercados laterais. De um modo geral, as ações estiveram em uma tendência de alta na escalada para a maior parte do rali de sete anos, então a teoria sugere que as médias móveis podem ser ferramentas particularmente poderosas no atual ambiente de mercado. Olhando novamente para o gráfico SP 500 (acima), você pode ver que a tendência de longo prazo está em alta. Além disso, o preço está acima da média móvel de curto prazo e da média móvel de longo prazo. Se o preço diminuísse do nível atual, ambas as médias móveis seriam vistas como níveis de suporte significativos. Como mostra o gráfico, é possível que o preço permaneça acima (ou abaixo) uma média móvel por um longo período de tempo. Claro, você não gostaria de negociar apenas com base nos sinais gerados pelas médias móveis. No entanto, eles podem ser usados em combinação com outros pontos de dados técnicos e fundamentais para ajudar a formar sua perspectiva. Saiba mais A análise técnica concentra-se em ações específicas do mercado, volume e preço. A análise técnica é apenas uma abordagem para analisar ações. Ao considerar quais estoques para comprar ou vender, você deve usar a abordagem com a qual você está mais confortável. Tal como acontece com todos os seus investimentos, você deve fazer sua própria determinação quanto ao fato de um investimento em qualquer título ou títulos específicos ser adequado para você com base em seus objetivos de investimento, tolerância ao risco e situação financeira. O desempenho passado não é garantia de resultados futuros. Os mercados de ações são voláteis e podem diminuir significativamente em resposta a empreendimentos adversos, políticos, regulamentares, de mercado ou econômicos. Os votos são submetidos voluntariamente por indivíduos e refletem sua própria opinião sobre a utilidade dos artigos. Um valor percentual de utilidade será exibido uma vez que um número suficiente de votos tenha sido enviado. Fidelity Brokerage Services LLC, Membro NYSE, SIPC. 900 Salem Street, Smithfield, RI 02917 Informações legais importantes sobre o e-mail que você enviará. Ao usar este serviço, você concorda em inserir seu endereço de e-mail real e apenas enviá-lo para pessoas que você conhece. É uma violação da lei em algumas jurisdições se identificar falsamente em um e-mail. Todas as informações fornecidas serão utilizadas pela Fidelity apenas com o objetivo de enviar o e-mail em seu nome. A linha de assunto do e-mail que você enviará será Fidelity: Seu e-mail foi enviado. Movendo a suavização média e exponencial Modelos Como um primeiro passo para se deslocar para além dos modelos médios, modelos de caminhada aleatórios e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou de suavização. O pressuposto básico por trás da média e dos modelos de suavização é que as séries temporais são localmente estacionárias com uma média que varia lentamente. Por isso, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, use isso como a previsão para um futuro próximo. Isso pode ser considerado como um compromisso entre o modelo médio e o modelo random-walk-without-drift. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel geralmente é chamada de uma versão quotsmoothedquot da série original porque a média a curto prazo tem o efeito de suavizar os solavancos na série original. Ao ajustar o grau de alisamento (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ideal entre o desempenho dos modelos de caminhada aleatória e média. O tipo mais simples de modelo de média é o. Média Móvel simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para repousar Para uma previsão das séries temporais Y feitas o mais cedo possível por um determinado modelo.) Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar para trás do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Assim, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: esta é a quantidade de tempo pelo qual as previsões tenderão a atrasar os pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados na resposta a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m for muito grande (comparável ao comprimento do período de estimativa), o modelo SMA é equivalente ao modelo médio. Tal como acontece com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot para os dados, ou seja, os menores erros de previsão em média. Aqui é um exemplo de uma série que parece exibir flutuações aleatórias em torno de uma média que varia lentamente. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: o modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo, elege muito da quotnoisequot no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentemos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais lisas: a média móvel simples de 5 meses produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nesta previsão é de 3 ((51) 2), de modo que tende a atrasar os pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não se desviam até vários períodos depois). Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se ampliam à medida que o horizonte de previsão aumenta. Isso obviamente não está correto. Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para esse modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões do horizonte mais longo. Por exemplo, você poderia configurar uma planilha em que o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc., dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo, adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais de um efeito de atraso: a idade média é agora de 5 períodos (91) 2). Se tomarmos uma média móvel de 19 termos, a média de idade aumenta para 10: Observe que, de fato, as previsões estão atrasadas em torno de 10 pontos. Qual quantidade de suavização é melhor para esta série. Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3 termos: Modelo C, a média móvel de 5 termos, produz o menor valor de RMSE por uma pequena margem ao longo dos 3 Médias temporais e de 9 termos, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferimos um pouco mais de capacidade de resposta ou um pouco mais de suavidade nas previsões. (Retornar ao topo da página.) Browns Suavização exponencial simples (média móvel ponderada exponencialmente) O modelo de média móvel simples descrito acima tem a propriedade indesejável de que trata as últimas observações k de forma igualitária e ignora completamente todas as observações precedentes. Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que o segundo mais recente, e o segundo mais recente deve ter um pouco mais de peso do que o terceiro mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Deixe 945 indicar uma constante de quotesmoothing (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série como estimado a partir de dados até o presente. O valor de L no tempo t é calculado de forma recursiva a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior em uma quantidade fracionada de 945. É o erro cometido em Tempo t. Na terceira versão, a previsão é uma média móvel ponderada exponencialmente (com desconto) com o fator de desconto 1- 945: a versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em uma Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior e a célula onde o valor de 945 é armazenado. Note-se que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, supondo que o primeiro valor suavizado seja igual à média. (Voltar ao topo da página.) A idade média dos dados na previsão de suavização simples-exponencial é 1 945 em relação ao período para o qual a previsão é calculada. (Isso não deve ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a atrasar os pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0.5 o atraso é de 2 períodos quando 945 0.2 o atraso é de 5 períodos quando 945 0.1 o atraso é de 10 períodos e assim por diante. Para uma média de idade dada (ou seja, a quantidade de lag), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão da média móvel simples (SMA) porque coloca um peso relativamente maior na observação mais recente - isto é. É um pouco mais quotresponsivech para as mudanças ocorridas no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 ambos têm uma idade média de 5 para os dados em suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no Ao mesmo tempo, não possui 8220forget8221 sobre valores com mais de 9 períodos de tempo, como mostrado neste gráfico: Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, portanto, pode otimizar facilmente Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor ideal de 945 no modelo SES para esta série é 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3,4 períodos, o que é semelhante ao de uma média móvel simples de 6 termos. As previsões de longo prazo do modelo SES são uma linha direta horizontal. Como no modelo SMA e no modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança computados por Statgraphics agora divergem de forma razoável e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um pouco mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Então a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não-sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1- 945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série analisada aqui, o coeficiente MA (1) estimado é 0.7029, o que é quase exatamente um menos 0.2961. É possível adicionar a hipótese de uma tendência linear constante não-zero ao modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não-sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial constante a longo prazo a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa de quotinflação adequada (taxa de crescimento) por período pode ser estimada como o coeficiente de inclinação em um modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode ser baseado em outras informações independentes sobre perspectivas de crescimento a longo prazo . (Voltar ao topo da página.) Browns Linear (ou seja, duplo) Suavização exponencial Os modelos SMA e os modelos SES assumem que não há nenhuma tendência de nenhum tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Previsões passo a passo quando os dados são relativamente barulhentos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. E quanto a tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaca claramente contra o ruído e, se houver necessidade de prever mais de 1 período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de alisamento exponencial simples pode ser generalizado para obter um modelo de alisamento exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência mais simples do tempo é o modelo de suavização exponencial linear Browns, que usa duas séries suavizadas diferentes centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de alisamento exponencial linear Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes, mas equivalentes. A forma quotstandardquot deste modelo geralmente é expressa da seguinte maneira: Seja S denotar a série de suavização individual obtida pela aplicação de suavização exponencial simples para a série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Suavização exponencial, esta seria a previsão de Y no período t1.) Então, deixe Squot indicar a série duplamente suavizada obtida aplicando o alisamento exponencial simples (usando o mesmo 945) para a série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, traga um pouco e deixe a primeira previsão igual a primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isso produz os mesmos valores ajustados que a fórmula com base em S e S, se estes últimos foram iniciados usando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Suavizante Brown8217s modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz com um único parâmetro de suavização coloca uma restrição nos padrões de dados que ele pode caber: o nível e a tendência Não podem variar a taxas independentes. O modelo LES de Holt8217s aborda esse problema ao incluir duas constantes de suavização, uma para o nível e outra para a tendência. A qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui, eles são computados de forma recursiva a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam o alisamento exponencial separadamente. Se o nível estimado e a tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão de Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada de forma recursiva interpolando entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1- 945. A alteração no nível estimado, Lt 8209 L t82091. Pode ser interpretado como uma medida ruim da tendência no tempo t. A estimativa atualizada da tendência é então calculada de forma recursiva interpolando entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: a interpretação da constante de simulação de tendência 946 é análoga à da constante de alívio de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda muito lentamente ao longo do tempo, enquanto modelos com 946 maiores assumem que está mudando mais rapidamente. Um modelo com um grande 946 acredita que o futuro distante é muito incerto, porque os erros na estimativa de tendência se tornam bastante importantes ao prever mais de um período à frente. (Voltar ao topo da página.) As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas revelam-se 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume mudanças muito pequenas na tendência de um período para o outro, então, basicamente, esse modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados utilizados na estimativa do nível local da série, a idade média dos dados utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a ela. . Neste caso, isso é 10.006 125. Este não é um número muito preciso na medida em que a precisão da estimativa de 946 não é realmente 3 casas decimais, mas é da mesma ordem geral de grandeza que o tamanho da amostra de 100, então Este modelo está com uma média de bastante história na estimativa da tendência. O gráfico de previsão abaixo mostra que o modelo de LES estima uma tendência local um pouco maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, então este é quase o mesmo modelo. Agora, isso parece previsões razoáveis para um modelo que deveria estimar uma tendência local Se você 8220eyeball8221 este gráfico, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foi estimado pela minimização do erro quadrado das previsões de 1 passo à frente, não de previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está procurando é erros de 1 passo a passo, você não está vendo a imagem maior das tendências em relação a (digamos) 10 ou 20 períodos. Para obter este modelo mais em sintonia com a extrapolação dos dados no olho, podemos ajustar manualmente a constante de alívio da tendência, de modo que ele use uma linha de base mais curta para a estimativa de tendência. Por exemplo, se optar por definir 946 0,1, a idade média dos dados utilizados na estimativa da tendência local é de 10 períodos, o que significa que estamos em média a tendência nos últimos 20 períodos ou mais. Aqui é o que parece o gráfico de previsão se definimos 946 0,1 enquanto mantemos 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso extrapolar esta tendência mais de 10 períodos no futuro. E as estatísticas de erro Aqui está uma comparação de modelo para os dois modelos mostrados acima, bem como três modelos SES. O valor ideal de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com um pouco mais ou menos capacidade de resposta, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alpha 0.3048 e beta 0.008 (B) Holts linear exp. Alisamento com alfa 0.3 e beta 0.1 (C) Suavização exponencial simples com alfa 0.5 (D) Suavização exponencial simples com alfa 0.3 (E) Suavização exponencial simples com alfa 0.2 Suas estatísticas são quase idênticas, então realmente podemos usar a escolha com base De erros de previsão de 1 passo à frente na amostra de dados. Temos de voltar atrás em outras considerações. Se acreditamos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos sobre se existe uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também daria mais previsões do meio da estrada para os próximos 5 ou 10 períodos. (Retornar ao topo da página.) Qual tipo de tendência-extrapolação é melhor: horizontal ou linear Evidências empíricas sugerem que, se os dados já foram ajustados (se necessário) para inflação, então pode ser imprudente extrapolar linear de curto prazo Tendências muito distantes no futuro. As tendências evidentes hoje podem diminuir no futuro devido a causas variadas, como obsolescência do produto, aumento da concorrência e recessões cíclicas ou aumentos em uma indústria. Por este motivo, o alisamento exponencial simples geralmente apresenta melhor fora da amostra do que seria de esperar, apesar da sua extrapolação de tendência horizontal de quotnaivequot. As modificações de tendências amortecidas do modelo de alisamento exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES da modificação amortecida pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. (Beware: nem todo o software calcula os intervalos de confiança para esses modelos corretamente.) A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de alisamento (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos adiante que você está prevendo. Em geral, os intervalos se espalham mais rápido, à medida que 945 se ampliam no modelo SES e se espalham muito mais rápido quando o alisamento linear, em vez do simples, é usado. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.)
Комментариев нет:
Отправить комментарий